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My Aim

To show how proof terms
for classical propositional logic
form a category, and to examine
some of its properties.



Today's Plan

Proof Terms
The Proof Term Category
It’s not Cartesian
It i1s Monoidal, and more...
Isomorphisms

Further Work






There can be different ways to prove the same thing

PAg>PV(



Four different derivations,

PP P>p
—— AL VR
PAg>P P>pPvd

—— VR AL
PAg>PV( pAg>pPV(q
qa>d qa>dq
—— AL vR
PAd>-q q»-pvq

R

_ — AL
pAgrpvq pPAd>PVQ



Four different derivations, two proofs
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Motivating Idea

Proof terms are an invariant
for derivations under rule permutation.

01 and &; have the same term iff
some permutation sends 8 to d;.



Four different derivations, two proof terms
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Aterms ¢ flowgraphs € proofnets



Slogan

A proof term for L > A
encodes the flow of information

in a proof of ¥ > A.
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Results

» Cut elimination is confluent and terminating.
[So it can be understood as a kind of evaluation.]

» Cut elimination for proof terms is local.

[So it is easily made parallel.]



Proof Terms

Seehttp://consequently.org/writing/
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Abstract: 1 give an account of proof terms for derivations in a sequent calculus for classical propositional
logic. The term for a derivation & of a sequent £ > A encodes how the premises £ and conclusions
Aare related in 8. This encoding is many-to-one in the sense that different derivations can have the
same proof term, since different mayb ays of the same underlying
connection between premises and conclusions. However, not all proof terms for a sequent £ > A are
the same. There may be different ways to connect those premises and conclusions.

Proof terms can be simplified in a process corresponding to the elimination of cut inferences in se-
quent derivations. However, unlike cut elimination in the sequent caleulus, each proofterm has a unique
normal form (from which all cuts have been eliminated) and it straightforward to show that term reduc-
tion is strongly normalising—every reduction process terminates in that unique normal form, Furcher-
more, proof terms are invariants for sequent derivations in a strong 81 and 5,
have the same proof term ifand only if some permutation of derivation steps sends 81 0.8, (given a rela-
tively natural class of permutations of derivations in the sequent calculus). Since not every derivation of
a sequent can be permuted into every other derivation of that sequen, proof erms provide a non-trivial
account of the identity of proofs, ind of the syntactic of those proofs.

OUTLINE
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Proof Terms
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Proof Terms as Graphs on Sequents

AXTTAVY AXTTAVY VAXTAVY VAXTTAVY

xipA(@vr)>y:(pag)v(par)

pA(qvT)

Prd)viparT)



Finding a Proof Term from a Derivation
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Finding a Proof Term from a Derivation
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Finding a Proof Term from a Derivation
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Finding a Proof Term from a Derivation
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Finding a Proof Term from a Derivation
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Finding a Proof Term from a Derivation
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Proof Term Facts

Not every directed graph on occurrences of atoms in a sequent is a proof term.
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Proof Term Facts

Not every directed graph on occurrences of atoms in a sequent is a proof term.

» They typecheck. [An occurrence of p is linked only with an occurrence of p.]

» They respect polarities. [Positive occurrences of atoms in premises and
negative occurrences of atoms in conclusions are inputs. Negative
occurrences of atoms in premises and positive occurrences of atoms in
conclusions are outputs.]

» They must satisfy an “enough connections” condition, amounting to a
non-emptiness under every switching. [e.g. the obvious linking between
premise p v ¢ and conclusion p A q is not connected enough to be a
proof term.]



Cutis chaining of proof terms
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Cutis chaining of proof terms



Cutis chaining of proof terms
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The cut formula is no longer a premise or a conclusion in the proof term.



Eliminating Cuts is Local
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Eliminating Cuts is Local
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Eliminating Cuts is Local
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Eliminating Cuts is Local
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The Conjunction Reduction Case, for Derivations
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Two Different Proofs from (p A q) v (p A 1) toitself

(pAq)v(pnar) (Prg)v(par)
(p/q)va) (PArd)v(par)

The second proof term is the identity proof.
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Bounds

T and L are interesting.
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Bounds

T and L are interesting.

They actlikep v —pand q A —q,

except they have no internal structure.

P AP p +
A ¥
¥ O\ q

q qv—q

A | link has an input but no output.

A T link has an output but no input.

No links have T as an input.

No links have | as an output.

—<«<0 T
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OBJECTS: Formulas— ARROWS: Cut-Free Proof Terms

m: A — Biff rt(x)[y] is a cut-free proof for x: A > y: B.
ida : A — A is the identity proof term x~2y of type A.
Composition is chaining proofs & elimination of cuts.
e Ift:A—Bandt:B — Cthentomn:A — Cis(r(x)[e] T(e)[y])*.
Composition is associative.

Identity proofs are indeed identities in the category:

o (m(x)[¢] #7y)* = n(x)[y], and (xFe 7(e)[y])* = 7(x)[y],
when 7t is cut-free.



How Identity Proofs Compose
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How Identity Proofs Compose
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How Identity Proofs Compose
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We have a Category

Proof Terms The Category T of Cut-Free Terms
» mhas type X > A. » 7: A — B.
> Proofs are SET-SET. » Proofs are FMLA-FMLA.
» Proofs include Cuts. » Proofs have no Cuts.
xRy 7i(x)[v] ida n
x:A>y:A x:A>y:B A—A A —B
Fe o)) o T

x:A>y:B A —B



What is the proof term category like?



Cartesian Products
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Cartesian Products
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Cartesian Products
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Cartesian Products

molf,gy=Ff molf,g)=g

This looks a lot like conjunction.



Many interesting categories have cartesian products.
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The Empty Product
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Coproducts and Initial Objects

A1 A+B«2 B

C

O ¢-----



Residuating Products — internalising arrows

f:AxB—C f:A->B>C ev:(BoC)xB—C

(BoC)xB == C

g

A xB



Cartesian Closed Categories...



Cartesian Closed Categories...

..model intuitionistic logic.



Cartesian Closed Categories...

..model intuitionistic logic.

They collapse into preorders when made classical.



So what is the proof term category?



So what is the proof term category?

Since it isn’t a preorder, and it is classical...
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T is not Terminal, L is not Initial
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T is not Terminal, L is not Initial

PATD

T qv —q
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..and nothing else s initial or terminal either

If T is a candidate terminal object,
then there is some arrow T — T.

In this arrow all links are internalto T
(since T is never a source in a link).

These links generate a proof term for | — T,
and this proofignores 1.

There is a different proof term for | — T
using | and ignoring T.

(This dualises for any candidate initial object 1.)



Conjunction isn't Cartesian Product
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Conjunction isn't Cartesian Product

We have candidate projection arrows.
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Conjunction isn't Cartesian Product

We have candidate projection arrows.

And a candidate pairing arrow.

A o



Conjunction isn't Cartesian Product

We have candidate projection arrows.

And a candidate pairing arrow.

A+—AxB — B C
o) £/ \9
f ! 9 AAB

C

But its composition with “projection”
need not restore f and g.
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An Example
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An Example

f g m o(f,g)
PA—P P AP P AP
N A
P q p

Notice: 7 o {f, g)is not f.

It has some of g (in this case, all of the links of g) left behind.



An Example

f g m o(f,g)
PA—P P AP P AP
N A
P q p

Notice: 7 o {f, g)is not f.
It has some of g (in this case, all of the links of g) left behind.

However, in general, f < 71y o (f,gyand g < m, o {f, g).



Diagnosis

This arises from the locality of cut reduction.

P>P,q
P, —P > P p,—P>q
PA—DP>P PA—DP>q P,q>p
AR — AL
PA—DP>PAQ PAG>-D
Cutprq
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In fact, there are no Cartesian Products

A slightly more general argument shows that there is no object p x ¢
» equipped with projection arrows 7ty : p X ¢ — pand 7 :p X  — (,
» where there is some proof h : p A —=p — p x g, such that

»moh=fandmoh = g.



In fact, there are no Cartesian Products

A slightly more general argument shows that there is no object p x ¢
» equipped with projection arrows 7ty : p X ¢ — pand 7 :p X  — (,
» where there is some proof h : p A —=p — p x g, such that
»moh=fandmoh = g.

(The argument is a dilemma: does h contain a link between the instances of p in the
premise p A —p? If it does, then composition with 7t; preserves that link, and 71y o h
isn’t f. If it doesn’t, there is no way for 7t, o h to contain that link.)



So, if it isn’t Cartesian, what is the category like?
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Monoidal Categories

Many categories have something like cartesian product, but different.
Tensor product — ® — in vector spaces is an important example.

This motivates the definition of a monoidal category.



Symmetric Monoidal Categories
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Symmetric Monoidal Categories

®:CxC—>C  1e0b(e)

oaaBc:A®B®C) > (A®B)®C

O'A’BZA@)B;B@A LAZ1®A:>A

where associativity (), symmetry (o) and unit (1) behave sensibly.
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Associativity

(A®B)®(C®D)
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(The ‘Pentagon’)



Symmetry
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Symmetry

OA,B
ARB B®A

OB,A

OA,BRC
) ——

(AQB)®C 225 AQ(BRC) 225 B®C)®A

OA B@idci J"XB,C,A

(BOA)®C e BOMA®C) = BO(COA)

XB,A,C

(The ‘Hexagon’)



(Let’s drop the subscripts on «, 0, t, id where there’s no ambiguity.)



Unit

A®R1N®B X+ A®(1®B)

U@idi lid@t

(1®A)®B ——— A®B

(The ‘Square’)



Proof Terms are a Symmetric Monoidal Category under A /T
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Proof Terms are a Symmetric Monoidal Category under A /T

ATxT—>T  Teob(T)

&:AA(BAC)S(AAB)AC

G:AABSBAA  (:TAASA

and indeed, associativity (&), symmetry ((Ar) and unit (f) behave sensibly.
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The Pentagon, Hexagon, Square, etc., commute

(AAT)AB —%4 A A (T AB)

G /\idl lid/\ T

(TAA)AB —— AAB
Laid
(U Aid) o (0 A id) = (id A1) o
(AAT)AB (AAT)AB (AAT)AB
[ ¢l
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The Pentagon, Hexagon, Square, etc., commute

(AAB)A(CAD)

A A (BAa(CAD)) (AAB)AC)AD
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The Pentagon, Hexagon, Square, etc., commute

A

(A/\B)/\CLAA(B/\C)%(B/\C)/\A
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Proof Terms are a Symmetric Monoidal Category under v / |

v:ITxT—>T  Leob(?)
x:Av(BvC)S(AvB)vC

G:AVvBSBVA  (:LvASA

and associativity (gc), symmetry ((VT) and unit ({) behave just as sensibly.
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Linear Distributive Categories

The operators A and v are connected by  and &’

d3:AA(BvC)—>(AAB)vC 8 :(AvB)AC—AvVv (BACQ)

If the operators are symmetric, then we need only one.

(AvB)AC -5 Av (BAC)

] [E

CA(AvB) (BAC)VA

idn c\}l T(Arvid

C/\(BVA)T)(C/\B)VA



dand &’ are obvious proof terms



Linear Distributivity Conditions
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Linear Distributivity Conditions

(AAB)A(CvD) —%5 AA(BAa(CvD))

TA(AvVB) lma
l \ 5 A A ((B AC)vD)
(TAA)VB — AvB lz,
((A/\B)/\C)VDW(AA(B/\C))\/D

(AVB)AC)vD «2— (AvB)A(CvD) -5 Av (BAa(CvD))

é’vidl lidvé

(Av(BAC)vD Av((BAC)vD)

¢4

(These diagrams clearly commute in the proof term category.)
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Star-Autonomous Categories

There are a number of ways to define Star-Autonomous Categories.

We have a —A for each object A, and two sets of arrows.

YA AA—-A—> L TA: 1 > —-AVA

These arrows have natural proof terms.

Y T
A A—A T
Vi

1 AV A



These Diagrams Must Commute

An(-AVA) 25 Ar-A)vA 2% VA

id/\TT lf
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These Diagrams Must Commute

An(-AVA) 25 Ar-A)vA 2% VA

id/\TT lf

AT . , A
L
CAVA A A Y CAV(AA—A) Y AL
(
TAidT lf
T A—A >y —A

—->

These aren’t so obviously commutative as proof terms.



The negation diagrams commute in the proof term category
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The negation diagrams commute in the proof term category

yvid

AA(-AVA) 25 (Ar-A)vA 5 1 VA

id/\’rT l{

AANT A

>

o (id A T)

AAT
e

v A)
|

)v A

A A(
\

(A A

= >

-
—



The negation diagrams commute in the proof term category
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The negation diagrams commute in the proof term category
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The negation diagrams commute in the proof term category
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Lo(yvid)odo (idaT) L

AAT AAT

/
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Star-Autonomous Categories and Linear Logic

These categories model the multiplicative fragment of linear logic.



Linear Implication

I won’t pause now to explain how A © B, definable as —A v B
(or as —(A A —B), to which it’s isomorphic) is a right adjoint to A.



We can do more

Our proof terms allow contraction and weakening.



Weakening and Contraction Monoids and Comonoids

VA:AVA—-A

1
BA:J—_)A
Va éA

AV A

\/ i

A A



Weakening and Contraction Monoids and Comonoids

VaAa:AVA—A Ap:A—>AANA
1 T
BA:J_—’A BA:A—>T
Va éA A -BI—A

=

O
A
—

—<0 >



What Makes 3 and 3 weakening?

L
idvPg

A—" SAvVI AV B

T
idABg

AAB AAT — v A



(Co)monoidal Conditions for Contraction and Weakening

(AVA) VA —% s Av(AVA)

Vv idl lidv v

AVATA(TAVA

Av L B, M f’””’ AVA —% L AVA

dl Vl/ BN /

J_\/A—>A



Structurality for V and B: disjunctions

(AvB)v(AvB) —*5 Av (Bv(AvB) 2% Av ((BvA)vB)
lidv(ovid)
Av ((AvB)vB)
v lidvoc
Av (Av (BvB))
J(oc

AvB oo (AvA)v (BvB)




Structurality for V and f3: bounds

/V_i\ B
1vl 1 17
\/‘ ~_



Structurality for V and 3: bounds

/V_i\ B
1vl 1 IRt
-~ " ~_

v ldJ_

All these conditions are straightforward to verify for proof terms.



And dually for A and [Ti



Blend

<<=—>m

AUB
[



Blend

()s

<=—>m

AUB
[



o>

Blend



Blend

’g‘g ()s ’1@

B

—
Uj=>

v is a semilattice join on Hom(A, B).

(fufog=(fog)u(fog) fo(gug’)=(fog)u(fog’)

The term category T is enriched in SlLat.



Classical Categories

Classical categories are
star autonomous categories
with structural monoids and comonoids,
enriched in Slat.

Cf. Fihrmann and Pym:

» “Order-enriched categorical models of the classical sequent calculus”
JPAA (2006)

» “On categorical models of classical logic and the Geometry of Interaction”
MSCS (2007).
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(p A q) v (p A T)isnotisomorphictop A (q v 1)

pAq>)€(pAr (pra)v(pnar)
pA(qu
pA%pAr (P/‘J)V pPAT)



Also Not Isomorphisms

PEZPAP  DPEPVD

prlpva)Zpvpagq) pv—pET qA—qZl



Isomorphisms

AAT=A AAB=BAA AABAC)=(AAB)AC

AvIi~A AvBx~BVA Av(BvC)=(AvB)vC

—(A AB) = (—A v —B) —(A v B) = (—A A —B) -—AxA

T~ 1 -1 =T TvT=x>T IAalx>l

These isomorphisms (together with substitution into arbitrary contexts)
characterise isomorphism in the term category 7.



Hyperintensionality

Inside classical logic,
there is a fine-grained,
hyperintensional notion
of sameness of content,
tighter than logical equivalence
but looser than syntactic identity.






v

v

v

v

To Do List

Finish the completeness proof, to the effect that 7 is the free
classical category on L.

Explore other examples of classical categories.

Consider the restriction to terms for intuitionist derivations.
(This still isn’t Cartesian. What sort of category is it?)

Extend all of this to first order predicate logic.



' THANK YOU!

http //consequently org/presentatlon/2017/v
a- category of-classical- proofs tacl i

, @Dconsequenﬂy -


http://consequently.org/presentation/2017/a-category-of-classical-proofs-tacl
http://consequently.org/presentation/2017/a-category-of-classical-proofs-tacl
http://twitter.com/consequently
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